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Dehydrocoupling reactions of amine-borane adducts cata-
lyzed by half-sandwich carbonyl complexes are described.
Secondary amine-borane adducts released H, with catalytic
action of [CpMn(CO);] (Cp: 1°-CsHs), [(°-CeHe)Cr(CO);],
and [CpV(CO),] under photoirradiation to produce dimeric or
monomeric aminoboranes. These results were parallel to the
[M(CO)¢]-catalyzed system (M = Cr, Mo, and W); however,
the reactions were considerably slower. Dehydrocoupling of
BH;-NH,;Me afforded an aminoborane polymer, [BH,NHMe],,.

Intense attention is currently focused on transition-metal-
catalyzed dehydrocoupling reactions of amine—borane adducts.!
This reaction provides aminoboranes and borazines, which are
potential precursors of BN ceramics. Moreover, this type of
reaction has been developed toward utilization of amine—boranes
(in particular ammonia—borane) as chemical hydrogen storage
materials because of the large hydrogen content and its effective
release.” To date, it has been reported that borane dehydrocou-
pling can be catalyzed by Sc, Y,? Ti,* Z1,* Re,® Ru,®’ Rh,™™
Ir,'%!" and Ni'? complexes.'?

Recently, we reported dehydrocoupling of secondary and
primary amine-borane adducts catalyzed by group 6 metal
carbonyls, [M(CO)s] (M =Cr, Mo, and W)."* Non-bulky
secondary amine adducts, BH;-NHR; (R = Me, Et, 1/2 C4Hsg,
and 1/2 CsHyp), undergo the catalytic dehydrogenation under
photoirradiation to afford dimeric aminoboranes [BH,NR;],,
while the reaction of bulky derivatives (R = i-Pr and Cy; Cy:
cyclo-CgHyy) provides monomeric BH;=NR;. Furthermore,
primary amine adducts, BH;-NH;R (R = Me and Et), release
two equivalents of H, through the action of the metal carbonyl
catalyst to give borazine derivatives [BHNR];.

DFT calculations predicted a crucial role of an intermediate
involving a three-center two-electron interaction between the
metal atom and BH; moiety in the catalytic cycle."* This
suggests that metal fragments capable of interacting with a BH;
moiety can catalyze borane dehydrocoupling reactions. Based
on such an idea, we examined dehydrogenation of secondary
and primary amine-boranes using half-sandwich carbonyls
[CpMn(CO);] and [(15-C¢Hg)Cr(CO);], which are known to
react with tertiary amine-boranes under photoirradiation to
yield o complexes, [CpMn(CO),(n'-BH;-L)] and [(1°-CeHe)-
Cr(CO)(n'-BH;-L)] (L = NMe; and N(CH,CH,);CH).">1¢ We
also employed a structurally relevant vanadium complex,
[CpV(CO)4] as a precatalyst. In fact, these trials resulted in
occurrence of catalytic borane dehydrocoupling reactions. In this
paper, we describe the results of this study. We also discuss the
reaction mechanism on the basis of DFT calculations.

A benzene-ds solution of BH;-NHMe, (1a) containing a
catalytic amount of [CpMn(CO);] (5 mol %) was prepared and
loaded in a flame-sealed Pyrex NMR tube. Near-UV irradiation
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Scheme 1. Half-sandwich carbonyl-catalyzed dehydrocoupling reac-
tions of secondary amine-boranes. cat. = [CpMn(CO)s], [(7°-CgHe)-
Cr(CO);], and [CpV(CO)y4].

to this solution resulted in gentle gas evolution to produce a red-
orange solution. After 1h of photolysis, the 'H and '"'BNMR
spectra of the resulting mixture indicated 32% conversion of 1a.
The major product was dimethylaminoborane dimer, [BH,-
NMe,], (2a, 8''B = 5.0),'7 and a small amount of the monomer
BH,=NMe, (3a, §''B = 37.7) was also detected.'’® Additional
standing for 24h at room temperature was required for the
completion of the reaction. The final yield of 2a reached 93%,
while 3a almost disappeared at the end of the reaction (Scheme 1
and Table 1, Entries 1 and 2). Thus, the manganese complex has
a catalytic ability on the dehydrocoupling of 1a; however, the
reaction was considerably slower than in the [M(CO)¢]-catalyzed
system (M = Cr, Mo, and W). The hexacarbonyl catalysts
complete the hydrogen elimination of 1a within 1 h of photolysis
or 24 h of standing after 5 min irradiation.'*

After the reaction, minor products (<1%), BH(NMe;), and
(1-Me;N)B,Hs were detected along with 2a by ''BNMR
spectroscopy (28.5 and —18.0 ppm, respectively). These prod-
ucts were identified by comparison of their ''BNMR chemical
shift values with the literature.'®!° In addition, a weak resonance
appeared at —22.2ppm in the ''BNMR spectrum after the
reaction. We tentatively assigned this signal to a borane o
complex, [CpMn(CO),(n'-BH3-NHMe,)] (4), because it ap-
peared at 9 ppm higher field than free 1a. Such a high-field-
shifted '"BNMR signal has been observed for a structurally
characterized manganese-borane complex, [CpMn(CO),(n'-
BH;-NMe3)],"° and other amine—borane and phosphine-borane
complexes.?’

A benzene chromium complex [(7%-C¢Hg)Cr(CO);] also
catalyzed the dehydrogenation of 1a to afford 2a. After 1h of
photolysis, the conversion of 1a was 73%. The reaction was thus
rather faster than the Mn-catalyzed case, but still slower than the
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Table 1. Manganese-, chromium-, and vanadium-catalyzed dehydrocoupling reactions of scondary amine-borane adducts

- TR
Entry Borane Catalyst (5 mol %) Condition® Conversion Product distribution’/%
/% [BHNR]; (2)  BH=NR; (3)
1 BH;-NHMe; (1a) [CpMn(CO);] hv 1h 32 87 4
2 hv 1h+RT 1d 100 93 trace
3 [(17%-CeHe)Cr(CO);]  hv 1h 73 75 1
4 hv 1h+RT 1d 94 96 trace
5 FL° 1d 96 92 trace
6 RT 3 h (dark) 0 — —
7 [CpV(CO)4] hv 1h 73 73 3
8 hv 1h+RT 1d 79 92 trace
9 FL° 3h 81 90 trace
10 FL° 1d 87 96 trace
11 RT 3 h (dark) 0 — —
12 BH;-NHEt, (1b) [CpMn(CO);] hv 1h 4+ RT 2d 100 68 6
13 [(n®-CeHe)Cr(CO);]  hv Sm+ RT 2d 95 69 5
14 [CpV(CO)4] FL® 3h 91 58 5
15 BH;-NH(CHy)s (1¢)  [CpMn(CO);] hv 1h+ RT 2d 79 93 trace
16 [(175-CsHe)Cr(CO);]  hv 1h 92 35 5
17 [CpV(CO)4] FL® 3h 75 69 trace
18 BH;-NHCy, (1d) [(n°-C¢He)Cr(CO)s]  hv 1h +RT 1d 5 — 63

*Photolyses were carried out at 8 °C using a 450 W medium pressure Hg lamp. "The yields of the products were judged by NMR. “Under

fluorescent light.

[M(CO)¢]-catalyzed reactions. After the irradiation, the solution
was allowed to stand for 24 h at room temperature in the dark to
complete the dehydrogenation. Interestingly, this Cr-catalyzed
reaction proceeds even under fluorescent light. As shown in
Table 1 (Entry 5), product 2a was obtained almost quantitatively
by fluorescent light-irradiation for 24 h. Note that no reaction
occurred if the sample was kept in the dark throughout,
indicating that the photoirradiation was required to generate
the active catalyst.

Furthermore, the dehydrocoupling of 1a was also catalyzed
by [CpV(CO),]. Near-UV photolysis of a benzene-dg solution of
1a and 5mol % of the vanadium complex led to H, evolution
with concomitant color change from orange to deep green. The
conversion was 73% after 1 h of photolysis, and was 79% after
additional standing for 1d at room temperature. Fluorescent
light-induced dehydrocoupling of 1a took place again even in
this V-catalyzed system. Under fluorescent light, H, vigorously
evolved, and the conversion reached 81% in 3 h. However, the
hydrogen release terminated with the conversion of 87% even
though the reaction time was prolonged. This is probably
because a coordinatively unsaturated vanadium species, a
possible active catalyst, dimerizes to produce a deep green
dinuclear complex, [Cp,V,(CO)s],>! losing the catalytic activity.

Table 1 summarizes the results of dehydrocoupling reac-
tions of several secondary amine-borane adducts. By the
catalytic action of the half-sandwich carbonyl complexes,
diethylamine—borane 1b and piperidine-borane 1c¢ release H,
similarly to l1a to afford [BH,NR,], (2b: R = Et,'7%222 2¢:
R = 1/2 CsH,¢)* in moderate to good yields. The dehydrogen-
ation of bulky BH;-NHCy, (1d) was very slow, and monomeric
BH,=NCy, (3d)*** was produced in low yield only if [(1°-
CgHg)Cr(CO);] was employed as a catalyst.

A primary amine-borane adduct BH;-NH,Me (le) also
liberated H, catalyzed by half-sandwich carbonyl complexes

Chem. Lett. 2011, 40, 171-173

© 2011 The Chemical Society of Japan

hv/—H, H o H
BH3-NH,Me p— 1/n J@‘a—r\‘l .
1e [CPMN(CO)g] H Me
[(CeHg)Cr(CO)5] Se
|
Me B Me
hv/-2H, SNTOSNT
1/3 I \
cat.= [M(CO)g] _Bo _B_
M = Cr, Mo, W N H

Scheme 2. Transition-metal carbonyl complex-catalyzed dehydro-
coupling reactions of methylamine-borane 1e.

under photolytic conditions. Notably, the product of this reaction
was an aminoborane polymer, [BH,NHMe], (Se, Scheme 2).
When [CpMn(CO);] was employed as a catalyst, the solution
color changed from yellow to red-brown with gentle gas
evolution with progress of the reaction. After 12 h of photolysis,
polymer Se precipitated out as a white viscous material.
Likewise, [(7°-C¢Hg)Cr(CO);] also catalyzed hydrogen elimi-
nation of 1e to provide a similar precipitate almost quantitatively
after 3 h of photolysis. Product 5e was insoluble in benzene, but
moderately soluble in chloroform. The 'H and !'B NMR spectral
data of the product in chloroform-d well accorded with the
literature values reported by Manners (§''B = 0-10, broad).'®
Polymer 5e formed a highly viscous gel-like material to frustrate
complete removal of residual solvent.

Formation of the polymeric product contrasts the [M(CO);]-
catalyzed dehydrocoupling reaction of 1e, in which the polymer-
ic borane is first generated, but it undergoes further dehydrogen-
ation to ultimately yield trimethylborazine [BHNMe]s.!* The
lower activity of the half-sandwich carbonyls should prevent the
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Scheme 3. The reaction pathway of the Mn-catalyzed dehydrocou-
pling of 1a predicted by DFT calculations (MPW1K). Relative free
energies are given in kcalmol™!. Zero point-corrected electronic
energies are also given in parentheses.

borazine formation. This makes possible selective preparation of
either a borazine derivative or an aminoborane polymer by the
proper choice of a catalyst ((M(CO)g] or half-sandwich carbon-
yls).

The reaction mechanism of the Mn-catalyzed dehydrocou-
pling of 1a was studied by DFT calculations with use of the
MPWIK functional (Scheme 3).2>?* Presumably, the active
catalyst of this reaction is a 14 electron species, [Mn(CO)Cp].
Borane 1a coordinates to the manganese center through the BH
and NH hydrogen atoms to form a chelate intermediate 6. This
complex then undergoes NH activation via a transition state
TS[6-7], generating an amido(borane) species 7. This step is
followed by BH activation (through TS[7-8]) to release 3a. The
resulting dihydride 8 liberates H, through a dihydrogen adduct 9,
regenerating the active catalyst, while liberated aminoborane
dimerizes to produce 2a. The BH activation step has the highest
barrier, 23.2 kcal mol ! (in free energy), in the reaction sequence.
This value is significantly larger than the activation energy for
the [Cr(CO)g]-catalyzed dehydrocoupling of 1a (AG* =13.3
kcal mol~1).'* This well accounts for the lower activity of the
manganese catalyst. The active species [Mn(CO)Cp] can be
generated via disproportionation of [Mn(CO),Cp], which is
formed by the photolysis of [CpMn(CO)s] or borane dissociation
from the o complex 4 (See Supporting Information).>> Another
reaction pathway, concerted H, elimination that occurs on 16
electron [Mn(CO),Cp], was shown to have an even higher
activation barrier.
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